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Purpose: To understand the influence of various acquisition parameters on the  
ability of CEST MR‐Fingerprinting (MRF) to discriminate different chemical  
exchange parameters and to provide tools for optimal acquisition schedule design 
and parameter map reconstruction.
Methods: Numerical simulations were conducted using a parallel computing  
implementation of the Bloch‐McConnell equations, examining the effect of TR, 
TE, flip‐angle, water T

1
 and T

2
, saturation‐pulse duration, power, and frequency on 

the discrimination ability of CEST‐MRF. A modified Euclidean distance matching 
metric was evaluated and compared to traditional dot product matching. L‐Arginine 
phantoms of various concentrations and pH were scanned at 4.7T and the results 
compared to numerical findings.
Results: Simulations for dot product matching demonstrated that the optimal flip‐
angle and saturation times are 30

◦ and 1100 ms, respectively. The optimal maximal 
saturation power was 3.4 μT for concentrated solutes with a slow exchange rate, and 
5.2 μT for dilute solutes with medium‐to‐fast exchange rates. Using the Euclidean 
distance matching metric, much lower maximum saturation powers were required 
(1.6 and 2.4 μT, respectively), with a slightly longer saturation time (1500 ms) and 
90

◦ flip‐angle. For both matching metrics, the discrimination ability increased with 
the repetition time. The experimental results were in agreement with simulations, 
demonstrating that more than a 50% reduction in scan‐time can be achieved by 
Euclidean distance‐based matching.
Conclusions: Optimization of the CEST‐MRF acquisition schedule is critical for ob-
taining the best exchange parameter accuracy. The use of Euclidean distance‐based 
matching of signal trajectories simultaneously improved the discrimination ability 
and reduced the scan time and maximal saturation power required.
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1 |  INTRODUCTION

Chemical exchange saturation transfer (CEST) MRI is a mo-
lecular imaging technique that is capable of detecting milli-
molar concentrations of exchangeable protons.1-4 The CEST 
contrast mechanism, when stemming from endogenous 
proteins and metabolites with exchangeable protons such 
as amine, amide, or hydroxyl groups, has provided clinical 
insights in a variety of disease pathologies. These include 
cancer,5-7 stroke,8,9 mitochondrial disorders,10 disc and car-
tilage degeneration studies,11,12 and neurodegenerative dis-
eases.13-18 The same technique is even more sensitive when 
applied to exogenous materials19 involving the use of para-
magnetic lanthanides,19-21 liposomes,22 or iodine containing 
substances.23

Several challenges still prevent CEST‐MRI from reaching 
its full potential to become a routine clinical imaging tech-
nique. First, the predominantly used CEST analysis method 
is the Magnetization Transfer Ratio asymmetry (MTRasym

24), 
which is mixed with non‐CEST contrast contributions and 
highly dependent on the acquisition protocol parameters: 

where S(±Δω) is the signal measured with saturation at offset 
±Δω, and S0 is the unsaturated signal. A recent review on the 
application of CEST to clinical scanners has shown that there 
is a large heterogeneity in the acquisition parameters used by 
different medical centers,25 making the comparison of find-
ings difficult. Moreover, the MTRasym does not take under 
consideration the effect of the nuclear Overhauser enhance-
ment (NOE) mediated aliphatic protons, which can be highly 
dominant in the brain, and is prone to contamination from the 
semi‐solid magnetization transfer (MT) pool26,27 and water 
T1 effects.28-31

Ideally, for providing the most useful estimation of the 
metabolite of interest, the actual physical CEST properties—
proton exchange rate, and solute concentration should be 
mapped. In accordance, various efforts were previously taken 
to achieve quantitative CEST imaging32 such as the quanti-
tation of exchange using saturation power (QUESP) or time 
(QUEST)33-35 and Omega plot36 methods. These methods  
exploit the dependency of the CEST signal on the saturation 
power (or saturation time) and fit the MTRasym for a single 
offset as a function of the saturation parameter to estimate the 
labile proton volume fraction and exchange rate. Although 

normalization of the MTRasym by the signal acquired at the 
negative offset frequency is intended to reduce the MT effect, 
it has been shown that the semisolid peak is actually asym-
metric.37 Moreover, the QUESP type methods do not account 
for the NOE contribution. Alternatively, a multi‐Lorentzian 
model can be fitted to the entire Z‐spectrum, separating 
out the contribution of the CEST/MT/NOE pools.26,38,39 
However, a single Z‐spectrum‐based Lorentzian fit provides 
only a semi‐quantitative estimation of the pool features. To 
obtain the actual proton exchange rates and concentrations 
a multi‐saturation power acquisition is required, which can 
take from tens of minutes to more than an hour.

Magnetic resonance fingerprinting (MRF) is a new par-
adigm for quantitative imaging.40 Originally presented for 
quantitative mapping of water T1, T2 and B0, this technique en-
ables the fast and simultaneous mapping of several magnetic 
properties. It uses a pseudo‐random acquisition schedule, 
which yields unique signal trajectories, capable of differen-
tiating between various combinations of tissue properties. At 
the reconstruction step, the experimental data is compared 
to a Bloch equation‐based simulated dictionary, and the best 
match for each trajectory yields an estimated set of tissue 
properties.41 Recently, MRF was expanded and modified for 
CEST imaging42-44 whereby the Bloch‐McConnell equations 
are used to generate a reference dictionary, and a pseudo‐ 
random acquisition schedule with varied saturation power 
and/or times is used for obtaining signal trajectories and 
determining the exchange rate and volume fraction of the 
solute of interest. In the realm of quantitative CEST imag-
ing, CEST‐MRF possess several important advantages: the 
acquisition time is much shorter than the alternatives (a few 
minutes); it takes under consideration the effect of various 
solute pools, without assuming any symmetry; and it can  
simultaneously output the fully quantitative properties of sev-
eral‐pools.42 Although preliminary results were promising, 
the incorporation of CEST‐MRF in routine studies requires 
understanding the dependency of the discrimination ability 
on various pulse‐sequence parameters. Unlike classic water‐
pool MRF, which relies on non‐steady state evolution of the 
magnetization, CEST requires considerable amplification of 
the labile proton signal and typically requires long satura-
tion times leading to steady‐state magnetization. Hence, it is 
essential to evaluate the limitations and technical consider-
ations involving CEST‐MRF acquisition schedules.

In the present study, the effect of various acquisition 
properties on the discrimination ability of CEST‐MRF is sys-
tematically examined toward an optimized pulse sequence. 

(1)MTRasym =
S(−Δω)−S(+Δω)

S0

K E Y W O R D S
chemical exchange rate, chemical exchange saturation transfer (CEST), magnetic resonance 
fingerprinting (MRF), optimization, pH, quantitative imaging
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Moreover, a CEST‐MRF specific Euclidian distance‐matching 
metric is suggested, and compared to the conventional dot 
product metric, for improved parameter map reconstruction. 
We include numerical simulations in addition to in vitro  
L‐Arg phantom studies at 4.7T.

2 |  METHODS

2.1 | Simulated CEST scenarios
Three main representative CEST scenarios were numerically 
investigated, under 4.7T field conditions:

1. “Scenario A”: Amide exchangeable solute proton with 
a slow exchange rate but relatively high proton volume 
fraction, analogous to the endogenous amide protons 
observed in vivo. A 3‐pool simulation model was used 
that included the endogenous amide proton pool (chem-
ical shift of 3.5 ppm), semi‐solid proton pool (chemical 
shift of −2.5 ppm), and water proton pool.

2. “Scenario B”: Amine exchangeable proton with a medium 
to fast chemical exchange rate but relatively dilute proton 
volume fraction, analogous to applications such as imag-
ing endogenous creatine,45 iodine‐based pH probes,23 or 
CEST reporter genes.46 A 2‐pool case was simulated, with 
the solute chemical shift set at 3 ppm.

3. “Scenario C”: To explore the general effect of water T1 
and T2 changes on the optimized parameters, and to fa-
cilitate convenient validation using imaging phantoms, a 
third scenario was examined identical to scenario B but 
with longer relaxation times. Alterations in water T1 and 
T2 are expected in some clinical cases (e.g., edema), dur-
ing the use of mixed iron‐CEST agents,47 and for drastic 

pH changes involving exogenous materials.48 The simu-
lated multi‐pool properties for each of the 3 scenarios are 
detailed in Table 1.

2.2 | Bloch‐McConnell‐based 
dictionary generation
Dictionaries of simulated signal intensity trajectories were 
generated using a Pade approximation49 for the numerical 
solution of the Bloch‐McConnell equations. A 3‐pool system 
was simulated using 3 components for water, CEST, and semi-
solid MT as suggested previously,50,51 forming a 7 × 7 matrix 
equation. For acceleration, the simulation was implemented in 
C++ using eigen52 for linear algebra operations and openMP53 
for multi‐threading. The source code was compiled with g++ 
7.3 on an Ubuntu OS and is callable as a mex function in 
MATLAB (The MathWorks, Natick, Massachusetts).

2.3 | Matching metric
The pattern matching methodology, i.e., the assignment of 
the measured trajectory to a specific dictionary entry, deter-
mines the inherent discrimination of a given schedule. In this 
study, 2 matching metrics were used:

1. Vector dot product (DP) after 2‐norm normalization40: 

where e denotes an experimental signal trajectory and d  
denotes the dictionary entry vector.

(2)DP(e, d)=
⟨e, d⟩

��e�� ⋅ ��d��

T A B L E  1  Relaxation time and chemical exchange parameters for the examined CEST application scenarios

Scenario A B C

Description

3‐pool: water, amide 
proton, and semisolid 
MT

Diluted solutes in the medium 
to fast exchange rate regime 
(2‐pool)

Diluted solutes in the medium to fast 
exchange rate regime (2‐pool) + long 
water relaxation times

Water T
1
 (ms) 1450 1450 2450

Water T
2
 (ms) 50 50 600

Solute T
1
 (ms) 1450 1450 2450

Solute T
2
 (ms) 1 40 40

ksw (Hz) 5:5:150 5:5:1000 5:5:1000

Solute concentration (mM) 100:50:1000 10:5:120 10:5:120

Exchangeable protons per solute 1 3 3

Off‐set frequency (ppm) 3.5 3 3

Semi‐solid T
1
 (ms) 1450 ‐ ‐

Semi‐solid T
2
 (ms) 0.04 ‐ ‐

Semi‐solid concentration (M) 13.2 ‐ ‐

kssw (Hz) 30 ‐ ‐
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2. Euclidean distance (ED) with trajectory normalization by 
M0 (the unsaturated reference signal) and the trajectory 
length (Nt): 

where: 

where M0e and M0d are the unsaturated reference signals for 
the experimental signal trajectory and the dictionary entry, 
respectively. Note that the normalization by Nt does not have 
an effect on the optimization (for a given trajectory length) 
but is used to bound ED to the range [0,  1], as in DP.

2.4 | Discrimination ability criteria
An ideal acquisition schedule will have a perfect match be-
tween the experimentally obtained trajectory and its ground 
truth corresponding dictionary entry while having a poor 
match with any other entry. To quantify the discrimination 
ability we have used the following loss measures, each suit-
able for a specific matching metric:

1. Off‐diagonal Frobenius norm dot product loss54 (for dot 
product matching): 

where D is the dictionary dot product matrix, consisting 
of the DP values for all ND combinations of dictionary en-
tries, I is the identity matrix, and || ||f  is the Frobenius norm. 
Intuitively, low DPloss values indicate that non‐identical tra-
jectories are close to orthogonal, hence the discrimination is 
optimized.
2. Off‐diagonal Frobenius norm Euclidean distance loss (for 

Euclidean distance matching): 

where E is the dictionary Euclidean distance matrix, contain-
ing ED values for all combinations of dictionary entries. The 
EDloss was designed to provide a qualitatively similar output 
to DPloss, namely low values indicate better discrimination, 
while 1 indicates no discrimination.
3. Monte Carlo simulation of noise propagation. White 

Gaussian noise (25 dB) was added to the dictionary and 
the resulting trajectories matched to the original noiseless 
dictionary. The process was repeated 100 times, and the 

root‐mean‐squared errors (RMSE) for the exchange rate 
and proton volume fraction matching were calculated. 
This measure was used for an acquisition schedule trunca-
tion study whereby the number of schedule iterations was 
optimized as it has been recently found useful for that pur-
pose.55 Moreover, DPloss and EDloss are not directly com-
parable and ED is biased when the number of iterations Nt 
is varied.

2.5 | Examining the dependence of the  
discrimination ability on the acquisition  
parameters
The influence of various acquisition parameters on the dis-
crimination ability was numerically investigated. Since a 
relatively large parameter space affects the obtained sig-
nals, we focused the evaluations on 2 varied parameters 
at each step (while keeping all others fixed). The baseline 
acquisition schedule was set to the published version,42 
which had a pseudorandom sequence of 30 saturation pow-
ers in the range of 0‐6 μT, TR = 4 s, TE = 21 ms, flip angle 
(FA) = 60◦, saturation time (Tsat) = 3  s, and a saturation 
offset frequency fixed to the solute offset frequency. The 
baseline saturation powers and the acquisition parameters 
examined are shown in Supporting Information Figure S1. 
Initially, the joint effect of varying the maximal satura-
tion power and Tsat was examined by rescaling the entire 
baseline schedule to have a maximum varying from 0.2 to 
6 μT in 0.2 μT increments and Tsat from 100 to 3900 ms in 
100 ms increments. Next, the optimal B1max and Tsat values 
were used, and the FA and TR were varied from 5◦ to 90◦ 
in 5◦ increments and from 100 ms higher than Tsat to 8 s in 
100 ms increments, respectively. Finally, the optimal B1max 
and Tsat values were again used with TR and FA fixed to 
their baseline values, but the saturation offset varied  
between 1 ppm lower than the solute offset to 1 ppm higher 
than the solute offset, in 0.1 ppm increments and the TE 
varied between 20 to 100 ms in 10 ms increments. For each 
combination of varied parameters, the DPloss and the EDloss 
were calculated, and the respective 3‐D surface plot with 
its projected loss iso‐contour lines was examined.

2.6 | Optimization of the schedule length
To investigate the feasibility of reducing the number of 
schedule iterations and thus further shorten the acquisition 
time, dictionaries for the baseline schedule were re‐created 
with Nt varied from 1 to 30. This same schedule was used 
for both matching metrics to facilitate easy comparison. The 
DPloss was then calculated to predict the discrimination abil-
ity using the dot product. We note that the equivalent calcula-
tion for EDloss is biased by Nt and therefore cannot be used 

(3)ED(e, d)=
1√
Nt

��Ẑe− Ẑd��

(4)Ẑe =
e

M0e

; Ẑd =
d

M0d

(5)DPloss =
1

ND

||I−D
T
D||f

(6)EDloss =
1

ND

||1−I−E||f
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to optimize the schedule length. To nonetheless compare the 
predicted performance for both matching methods, a Monte 
Carlo simulation of noise propagation was performed.

2.7 | Phantom study
The aim of the phantom study was to test the validity of the 
optimal acquisition parameters predicted by the loss meas-
ures, by experimentally performing the schedule length 
optimization study depicted above. A set of 3 L‐arginine 
phantoms were used, similarly to,42 containing a total of 9 
vials of 25‐100 mM dissolved L‐Arg in a buffer titrated to a 
range of 4‐6 pH. The vials were surrounded by 2% agarose 
gel and imaged at room temperature. Single‐slice, single‐
shot CEST‐MRF spin‐echo EPI was acquired on a 4.7T MRI 
(Bruker, MA), with a 35‐mm inner diameter birdcage vol-
ume coil (Bruker Biospin). The baseline acquisition sched-
ule parameters (Section 2.5) were used, with the addition 
of a preceding M0 scan. For direct comparison between the 
Euclidean distance and the dot product metrics reconstruc-
tions from the same scan, the M0‐scan was followed by a sin-
gle 15s repetition time.

As a reference ground truth, quantitative estimation of the 
solute properties was performed using QUESP,33 employing 
an EPI schedule with TE = 21 ms, TR = 10 s, FA = 90◦, at 
saturation frequency offsets of ±3 ppm and 0‐6 μT powers in 
1 μT increments. T1 maps were generated using variable rep-
etition time images, acquired with TR = 200, 400, 800, 1500, 
3000, and 5000 ms, TE = 7.5 ms, and FA = 90◦. T2 maps were 
generated from multi‐echo spin‐echo images, with a FA = 
90◦ , TE = 9 ms, TR = 2000 ms, and 25 echoes between 9 
and 225 ms. All imaging protocols had an identical geometry 
with the FOV set to 37 × 37 mm, and an isotropic pixel size 
of 1 mm.

2.8 | Experimental data analysis
The CEST‐MRF data was reconstructed into quantitative ex-
change rate and concentration maps by pixel‐wise matching 
the experimental trajectories to a dictionary comprised of the 
parameter combinations appearing in Table 1, “scenario C”. 
The solute exchange rate range was extended to 1400 Hz, to 
account for the high pH L‐Arg vials.42 The dot product and 
the Euclidean distance metrics were both employed, with the 
normalization performed as described in Section 2.3. T1 and 
T2 exponential fitting were performed using a custom‐written 
program. To obtain ground truth exchange rate values, pixel‐
wise exchange rate fitting of the QUESP data was performed 
with the known solute concentrations and measured water T1 
given as fixed inputs.34 For comparison, simultaneous fitting 
of the QUESP data for both the exchange rate and concen-
tration was also performed, by allowing both parameters to 
vary. Finally, the RMSE between the CEST‐MRF exchange 

rate and concentration maps and the respectively measured 
concentration and QUESP exchange rates (estimated with 
input ground truth concentrations) were calculated, using re-
gions of interest (ROIs) of 36 mm3. The mean ± SD RMSE 
for all 3 phantoms was calculated for each schedule length 
case. Differences were evaluated by Student’s t test with 
P < 0.05 considered as statistically significant. All calcula-
tions and fittings were performed using MATLAB.

3 |  RESULTS

3.1 | Dictionary simulation
A compiled parallel‐computing implementation of the Bloch‐
McConnell equation simulations was used to generate the 
MRF dictionaries, comprised of the parameter combinations 
described in Table 1. The synthesis times was approximately 
8 times faster than using the previously published sparse ma-
trix implementation42 on the same computer. For example, 
generation of the ∼670,000 entry dictionary described in42 
took 7.64 min, instead of 61 min on an Intel Xeon desktop 
computer equipped with four 2.27 GHz CPUs. It should be 
noted that the synthesis time could be further shortened by 
using a computer with more CPU cores.

3.2 | The dependence of the discrimination 
ability on the acquisition parameters
The surface plots describing the discrimination ability for the 
dot product metric are presented in Figure 1. The optimal sat-
uration times were 1100‐1200 ms for scenarios A and B and 
2600 ms for scenario C, which simulated longer water T1 and 
T2. The optimal maximum saturation powers were 3.4, 5.2, 
and 6 μT respectively, for scenarios A, B, and C. In all 3 sce-
narios, the discrimination increased (loss decreased) with in-
creasing flip‐angle till approximately 20◦ and then plateaued 
with very slightly increasing loss for greater flip‐angles. The 
discrimination ability continuously improved with increased 
repetition times in all cases. The echo time had no distinct ef-
fect on the loss, causing only slight variations. For the amide 
and semi‐solid scenario A, the optimal saturation frequency 
offset was the same as the amide pool frequency (3.5 ppm), 
as expected. Interestingly, the optimal offset shifted 0.1 ppm 
from the simulated solute offset for scenario B, and 0.4 ppm 
for scenario C.

The surface plots describing the parameter discrimina-
tion ability for the Euclidean distance metric are presented in 
Figure 2. The optimal saturation time was 1500 ms for sce-
nario A, and 1600 ms for both scenario B, and C. Similar 
to the dot product optimization, the optimal maximum sat-
uration power increased from case A to B, and C, although 
the required powers were lower (1.6, 2.4, and 5.2 μT, respec-
tively). The optimal TR was again 8000 ms for all scenarios, 
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although a clear flip‐angle dependency was evident here, 
yielding minimal EDloss for FA = 90◦. The echo time had a 
minor influence on the loss, as can also be inferred from the 
straight and parallel loss iso‐contours (Figure 2G‐I). This 
may stem from the normalization of the trajectories and is 
in agreement with previous reports on the influence of TE 
on the CEST effect.56 A minimal echo time should, nonethe-
less, be chosen for optimal experiment SNR (TE = 21 ms was 
obtained for most cases in Figures 1 and 2G‐I). The optimal 
saturation frequency was the same as the solute frequency for 
scenarios A and B, with a slight 0.1 ppm shift for scenario C.

The morphological differences between trajectories of var-
ious acquisition parameter combinations are shown in Figure 3  
(for the dot product metric), and Figure 4 (for the Euclidean 
distance metric). Visually, the differences in trajectories for 

various CEST properties mostly manifested as amplitude scal-
ing rather than distinctly different patterns. For both metrics, 
a pronounced deviation from the optimal set found was mani-
fested as smaller amplitude differences between trajectories, ac-
companied by a reduced loss value. Although not optimal, the 
trajectories of the baseline acquisition schedule were relatively 
similar in amplitude (and in the resulting loss) to the best set 
of parameters, explaining the previously good results reported 
using this acquisition parameter set.42

3.3 | Optimizing the schedule length
The resulting DPloss values for different schedule lengths 
are shown in Figure 5A. A step‐shaped improvement in 
the discrimination ability was demonstrated, with a leap 

F I G U R E  1  Dependence of the dot product loss on the acquisition parameters. The surface plots with projected loss iso‐contours describe the 
effect of the maximal saturation power and the saturation time (Tsat) (A‐C), the flip angle (FA) and TR (D‐F), and the TE and saturation frequency 
offset (G‐I), on the DP

loss
, for scenarios A (left column), B (center column), and C (right column). In all images, the z‐axis represents the DP

loss
, 

which is also color coded from blue to yellow. The optimal combination for each examined parameter pair is given in the surface plot

(A)

(D)

(G) (H)

(E)

(B) (C)

(F)

(I)
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in performance at Nt = 11. The average RMSE values for 
matching the solute concentration are shown in Figure 5B. 
The dot product related RMSE presented a similar step‐like 
shape, with a similar leap at Nt = 11. The Euclidean distance 
RMSE were lower than that of the dot product RMSE for 
most schedule lengths. Similar to the dot product results, the 
Euclidean distance RMSE predicted a discrimination ability 
improvement at Nt = 11. However, the general convergence 
to the minimum RMSE was much faster, with less discrimi-
nation improvement after the 11th iteration (milder slope). 
For the solute exchange rate (ksw) (Figure 5C), the Euclidean 
distance RMSE was again lower than the dot product RMSE 
for short schedule lengths, but the errors converged to a simi-
lar or slightly higher value at the final iteration.

3.4 | Phantom study
The measured solute concentrations and the QUESP exchange  
rate images (generated with the known concentrations 
as input) for the 9 imaged vials are shown in Figure 6A. 
The dot product matching of the CEST‐MRF trajectories 
using 4 schedule iterations yielded poor results, with only 
a few vials matched correctly (Figure 6B). When 11 itera-
tion long trajectories were used, the results have improved,  
although significant errors are still visible. Using all 30 
iterations, the errors are further reduced, yielding a more 
similar output to QUESP results. The corresponding re-
sults for the Euclidean distance‐based matching are shown 
in Figure 7. As can clearly be seen, using this metric the 

F I G U R E  2  Dependence of the Euclidean distance loss on the acquisition parameters. The surface plots with projected loss iso‐contours 
describe the effect of the maximal saturation power and the saturation time (Tsat) (A‐C), the FA and TR (D‐F), and the TE and saturation frequency 
offset (G‐I), on the ED

loss
, for scenarios A (left column), B (center column), and C (right column). In all images, the z‐axis represents the ED

loss
, 

which is also color coded from blue to yellow. The optimal combination for each examined parameter pair is given in the surface plot
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images converge to the QUESP results much faster, as most 
noticeable at Nt = 11. The visual difference between the 
matching outcomes using 11 or 30 iterations is barely vis-
ible (as predicted by the numerical simulation in Figure 5).  
The quantitative analysis of the experimental phantom 
RMSE, compared to the reference QUESP images is shown 
in Figure 8. The RMSE for the Euclidean distance matched 
images of solute concentration is significantly reduced at 
Nt = 11 compared to only 4 iterations, whereas using 30 
iterations has not yielded significant improvement. The 
Euclidean distance‐based solute concentration RMSE are 
also significantly lower than the corresponding dot product 
RMSE at Nt = 11. The dot product‐based solute concentra-
tion RMSE was not significantly reduced at Nt = 11 com-
pared to Nt = 4 but was significantly reduced at Nt = 30. 
Although similar trends were obtained for the exchange 
rate RMSE, no significant differences were observed. The 
quantitative values for all phantom vials are reported in 
Table 2.

4 |  DISCUSSION

The optimization of CEST‐MRF involves 2 competing 
mechanisms. On the one hand, traditional CEST imaging 
generally favors steady‐state‐like, high solute‐signal con-
ditions. On the contrary, classical MRF is typically char-
acterized by low‐SNR non‐steady state rapidly changing 
spin dynamics. The optimal parameters found (Figures 1 
and 2), contain elements from both concepts. While the 
resulting saturation times (1100‐1600 ms) were shorter 
than those typically used in continuous wave pulse satura-
tion CEST experiments,23 the optimal repetition time was 
at least 3 times longer than the water T1. Nevertheless, to 
retain a short acquisition time with satisfying accuracy, a 
compromise in TR duration (TR = 4 s) can be considered, 
with only a small sacrifice in discrimination ability. The 
compensation for speed‐loss may come from the small 
number of schedule iterations required; 11‐30 iterations 

F I G U R E  3  Exemplary trajectories for different combinations of acquisition schedule parameters normalized by the 2‐norm (for dot product 
matching). In (A‐C), the exchange rate was fixed at 400 Hz, and the solute concentration varied from 10 to 100 mM. In (d‐f), the solute concentration 
was fixed on 50 mM, and the exchange rate varied from 50 to 800 Hz. The left column represents a close to optimal acquisition parameters 
combination (TR was set to 4s instead of 8s for speed considerations), with saturation time (Tsat) = 2600 ms, FA = 60◦, saturation offset =  
2.6 ppm, TE = 21 ms, maximum saturation power = 6 μT. The center column represents the baseline acquisition schedule (Tsat = 3000 ms, saturation 
offset = 3 ppm, see Section 2.5), and the right column represents the same schedule, but with shorter saturation time and excitation flip angle  
(FA = 15◦, and Tsat = 1500 ms). The same CEST properties of scenario “C” were used for all trajectories
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for CEST‐MRF. The inherent conflict between non‐steady 
state conditions and the requirement for sufficient CEST‐
SNR was also evident in the trajectories associated with 

the various sets of schedule parameters (Figures 3 and 4). 
While the patterns become more distinct for shorter satura-
tion times, indicating the conditions are further away from 

F I G U R E  4  Exemplary trajectories for different combinations of acquisition schedule parameters normalized by M
0
 (for Euclidean 

distance matching). In (A‐C), the exchange rate was fixed at 400 Hz, and the solute concentration varied from 10 to 100 mM. In (D‐F), the solute 
concentration was fixed on 50 mM, and the exchange rate varied from 50 to 800 Hz. The left column represents a close to optimal acquisition 
parameters combination (TR was set to 4s instead of 8s for speed considerations), with saturation time (Tsat) = 1600 ms, FA = 90◦, saturation offset =  
2.9 ppm, TE = 21 ms, maximum saturation power = 5.2 μT. The center column represents the baseline acquisition schedule (Tsat = 3000 ms, 
saturation offset = 3 ppm, see Section 2.5), and the right column represents the same schedule, but with shorter saturation time and excitation flip 
angle (FA = 15◦, and Tsat = 1500 ms). The same CEST properties of scenario “C” were used for all trajectories

(A)

(D) (E) (F)

(B) (C)

F I G U R E  5  Optimization of the schedule length. A, DP
loss

 values for the baseline schedule with varied lengths. Note the step‐like shape, 
predicting noticeable performance improvement at Nt = 11, with further improvement when additional iterations are added. B, Solute concentration 
(M0s) RMSE, comparing the dot product and Euclidean distance‐based matching. C, Proton exchange rate (ksw) RMSE for both matching metrics

(A) (B) (C)
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steady‐state, the signal amplitudes get smaller and the loss 
is actually increased, corresponding to decreased param-
eter discrimination (Figure 3C,F).

The optimal acquisition parameters found in this study 
are in general agreement with previously published CEST‐
MRF sequences. For example, the saturation power and 
time used for dot product matching by Cohen et al42 (Tsat =  
3 s, maximal B1 = 6 μT) are very close to the optimal param-
eters found here (Tsat = 2.6 s, B1 = 6 μT) for a similar CEST 
scenario and are on the same loss iso‐contour (Figure 1C).  
The optimal TE and FA are also very similar (FA = 60◦, 
TE = 21 ms in42; FA = 65◦, TE = 21 ms in this study). 
Importantly, the optimization for the amide proton imaging 
3‐pool scenario, demonstrated that lower saturation power 
and times could have been used in previous brain in vivo 
CEST‐MRF efforts.42 Interestingly, in some cases (Figures 
1H‐I and 2I) the optimal saturation frequency offset was 
slightly shifted with respect to the solute offset, suggesting 

that incorporating several saturation offsets in the schedule 
could be useful. The possible origin of these shifts is the 
fast exchange rate involved, causing a broader CEST peak 
that is shifted closer to the water peak. The comparison 
with the results published in43 is more difficult, as a dif-
ferent range of exchange rates was imaged (0‐600 Hz), no 
matching of the solute concentration was performed, and 
the Tsat was varied during the acquisition. Although CEST‐
MRF can vary several acquisition parameters simultane-
ously at each iteration, we have chosen to focus this report 
on schedules that vary only the saturation power, due to 
the previously established efficiency of quantitative map-
ping with varied powers,34 and to simplify the multi‐pa-
rameter dependencies involved. The tools used throughout 
this work (DPloss, EDloss, and the Monte Carlo noise‐based 
simulations) could be useful for future optimizations, as 
they are not dependent on the number of varied parame-
ters at each iteration. Recently, a quantitative exchange rate 

F I G U R E  6  Dot product matching of CEST‐MRF phantom images. A, Reference of known solute concentration (top) and QUESP proton 
exchange rate images (bottom) for the 9 imaged vials. B‐D, Dot product reconstructed CEST‐MRF images for 4, 11, and 30 iterations, respectively. 
The same color map and dynamic range (top‐right) were used for all images
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and concentration mapping method was suggested, which 
fits the signals of a steady state CEST repeated experiment 
to the Bloch‐McConnell equations using a nonlinear least‐
square technique.44 The authors reported that a CEST‐MRF 
matching using the same parameters had inferior results. 
This can possibly be explained by the specific set of acquisi-
tion parameters used (Tsat < 800 ms, saturation power <1.2 
μT) that clearly deviated from the optimal sets found here.

The dot product matching metric is commonly used 
in MRF experiments.42,43 However, several studies have 
recently used the Euclidean distance metric.57,58 Its utili-
zation in this work, combined with the normalization by 
the M0 signal, has demonstrated several important advan-
tages. The optimal saturation powers for the Euclidean 
distance metric were approximately 2 times smaller than 
their equivalents for the dot product metric, in both scenar-
ios “A” and “B”, and approximately 10% smaller for sce-
nario “C” (Figures 1 and 2). This may reduce the specific 

absorption rate (SAR) level, an essential element for clin-
ical translation. In both numerical simulations (Figure 5) 
and phantom studies (Figures 6 and 7), it was shown that 
the Euclidean distance may reduce the matching errors, as 
well as reduce the schedule length (11 instead of 30 itera-
tions) and hence scan time. We assume that the improved 
discrimination ability, demonstrated in both the numerical 
simulation (Figure 5) and in the phantom study (Figure 8), 
mostly at image acquisition number Nt = 11, arises from 
the added information provided by the relatively low sat-
uration power at this iteration (Supporting Information 
Figure S1B), which broadens the range of saturation pow-
ers used up until that iteration. In the phantom study con-
ducted here, a single long TR (15s) was used following 
the added unsaturated reference scan, to allow convenient 
comparison with dot product matching based on the same 
acquired images. However, a much shorter TR value can 
be used following this iteration, as the signal evolution is 

F I G U R E  7  Euclidean distance matching of CEST‐MRF phantom images. A, Reference of known solute concentration (top) and QUESP 
proton exchange rate images (bottom) for the 9 imaged vials. B‐D, Euclidean distance reconstructed CEST‐MRF images for 4, 11, and 30 
iterations, respectively. The same color map and dynamic range (top‐right) were used for all images
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anyway simulated in the dictionary. The improved results 
gained by the Euclidean distance metric can potentially be 
explained by examining the morphology of the MRF tra-
jectories (Figures 3 and 4), showing that the discriminative 
information seems to be mostly manifested as signal inten-
sity variations. As the Euclidean distance metric is more 
sensitive to such information than to pattern variations58 
it seems to be more suitable for CEST‐MRF than the dot 
product metric. Moreover, the normalization by the unsatu-
rated M0 signal prevents the loss of some amplitude‐related 
information, as caused by the 2‐norm normalization of the 
entire acquired trajectory. To allow the flexibility of using 
both metrics, we suggest acquiring an M0 scan at the begin-
ning of the CEST‐MRF schedule.

Interestingly, simultaneous fitting of QUESP data for the 
determination of exchangeable proton concentration and the 
exchange rate yielded considerable errors in the solute con-
centration (Table 2). The total RMSE for the solute concen-
tration was 16.4 mM for QUESP, compared to 8.03 mM for 
Euclidean distance‐based CEST‐MRF with 30 acquisition 
iterations. This highlights the added value of fingerprinting 
as a multi‐parameter matching method.

Another practical consideration demonstrated by the re-
sults obtained here is that the discrimination ability of CEST‐
MRF decreases with decreasing T2 and increasing MT proton 
volume fraction. This is demonstrated in Figure 2 where the 
optimal discrimination is decreased (increased loss, min 
EDloss = 0.911) in scenario B with short water T2 compared 
to scenario C (min EDloss = 0.824) with longer relaxation 
times. Similarly, the introduction of the semi‐solid proton 
pool in scenario A leads to a further loss of exchange rate 

discrimination (min EDloss = 0.950) compared to scenario B 
with no MT pool. The reduced discrimination observed for 
shorter T2 and larger proton MT volume fraction can be over-
come with higher SNR, so that small signal trajectory differ-
ences can still be distinguished, or larger ranges of chemical 
exchange rate. This suggests that CEST‐MRF will have bet-
ter performance for exogenous CEST agents with fast chem-
ical exchange rates, compared to endogenous amide‐proton 
imaging, and that longer T2 relaxation times at lower field 
strengths may be advantageous.

The simulated in vivo scenario included the contribution 
of 3 pools: amide, semi‐solids, and water. However, in some 
tissues, there could also be an additional contribution by 
the amine pools, manifested at 2 ppm (commonly attributed 
to creatine) and at 3 ppm (mostly attributed to glutamate). 
Although the exchange rates for these pools are in the inter-
mediate to fast regime, it was previously shown that they may 
have an effect on the amide CEST signal.59,60 To investigate 
the potential MRF‐matching inaccuracies stemming from ne-
glecting the amine pools, we have simulated 4‐pool in vivo 
trajectories with various amine concentrations and matched 
them to the 3‐pool in vivo dictionary for the optimized ac-
quisition parameters found for the 3‐pool in vivo scenario 
(Supporting Information Table S1). The maximal amide 
proton exchange rate and volume fraction RMSE due to the  
2‐ppm amine pool (kex = 500 Hz) were 9.33 Hz and 0.089%, 
respectively, for the dot product optimized protocol, and 4.77 
Hz and 0.039% for the Euclidean distance optimized proto-
col. The maximal RMSE errors due to the 3‐ppm amine pool  
(kex = 5000 Hz) were 23.92 Hz and 0.138% for the dot product 
optimized protocol and 10.44 Hz and 0.06% for the Euclidean 

F I G U R E  8  Phantom study quantitative analysis. RMSE values for solute concentration (M0s) (A), and chemical exchange rate (ksw) (B), 
using the baseline schedule with varied lengths. Note the significant performance improvement at Nt = 11 for Euclidean distance M0s matching 
(A), significantly lower than the dot product respective values. No significant improvement occurs for the Euclidean distance at Nt = 30, suggesting 
the schedule can be shortened without harming performance

(A) (B)
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distance optimized protocol. This highlights the advantage of 
using the Euclidean distance‐based optimized parameters, 
which resulted in significantly lower saturation powers (max-
imum 1.6 μT, compared to 3.4 μT for the dot product‐based 
optimization) and, therefore, is less influenced by the amine 
pools. The effect of the amine pool on the MRF‐trajectories  
is further visualized in Supporting Information Figure S2, 
where for fixed amide exchange parameters, varying the 
amine pool concentration has almost no effect on the signal 
trajectory. Note that the influence of the amine pool is rela-
tively subtle for typical in vivo amide proton properties and 
that most of the errors occur for very slow (<30 Hz) exchange 
rates (Supporting Information Figure S3). Therefore, neglect 
of the fast exchanging amine proton pool is expected to result 
in minimal error in the amide proton exchange parameters, in 
particular for the Euclidian distance‐based matching metric. 
In the future, the contribution of the amine pools could po-
tentially be accounted for by sampling saturation frequency 
offsets between 2 and 3 ppm in the acquisition schedule and 
including the amine pool in the matching dictionary.

Although the RMSE Monte Carlo‐based noise measure 
(Figure 5B‐C) were generally able to predict the quantitative 
experimental results (Figure 8), some discrepancies were 
observed. These differences are mostly associated with the 
fact that the Monte Carlo simulations were performed for all 
dictionary entries throughout the entire range of parameters, 
whereas the experimental evaluation had a total of 9 vials, 
corresponding to 9 specific combinations of parameters. The 
noise level added to the Monte Carlo simulation (25 dB) was 
in good agreement with the actual noise measured from the 
9 vials (23.8 ±1.93 dB). Since no image‐averaging is per-
formed in CEST‐MRF, the noise level is slightly higher than 
typical CEST contrast.61 It should be noted that a Gaussian, 
rather than a Rician noise was used, due to the sufficiently 
high SNR levels.62,63

The usefulness of the DPloss metric was previously 
demonstrated in optimizing the varied schedule param-
eters (FA and TR) for water‐pool MRF EPI sequences.54 
However, Sommer et al,55 have recently reported that dot 
product‐based metrics are not suitable for schedule trunca-
tion studies in classical water pool MRF, and demonstrated 
the efficiency of Monte Carlo noise‐based simulations for 
this task. Conversely, this study had yielded a generally 
good agreement between the DPloss and the Monte Carlo‐
related measures (Figure 5A,B). A possible explanation 
may be the difference between the exact definitions of the 
loss. While a global maximum dot product‐based metric or 
a sum of dot product correlations in only a small local area 
of the entire dictionary was used by Sommer et al,55 a full 
consideration of the entire dictionary dot product values 
was performed in DPloss, as defined in this work. Moreover, 
while conventional T1/T2 MRF is prone to under sampling 

noise,62 which are not accounted for in the dot product‐
based loss measures, CEST‐MRF is much less affected 
by such contaminations since a fully k‐space sampled EPI  
sequence was employed with a relatively high SNR  
observed in the raw images.

The optimization of the acquisition parameters was 
performed sequentially so that 2 parameters were varied 
at each step. To verify that similar results are obtained 
for a different parameter optimization order, we have re-
peated the saturation power and Tsat optimization (origi-
nally optimized in the first step), while using the optimized 
values found for all other parameters. As can be seen in 
Supporting Information Figure S4 and Table S2, the result-
ing surface plots and the optimal parameters found were 
very similar to those obtained using the original optimiza-
tion order (Figures 1 and 2A‐C). This strengthens the valid-
ity of the optimal set found. However, due to the very large 
multi‐parameter space involved in CEST‐MRF, it is possi-
ble that we have reached a locally optimized solution and 
some better global solution exists. Future work is planned 
for incorporating machine learning‐based algorithms to  
accelerate the pursuit of such globally optimized acquisi-
tion schedules.64,65

Various efforts were previously taken to optimize the  
sequence of acquisition schedule parameters for T1/T2 water 
pool MRF (FA and TR).54,55,66 The scope of this work was 
limited to a fundamental understanding of the limitations in 
CEST‐MRF acquisition schedule parameters range, and to 
reducing the number of schedule iterations and thus used a 
fixed schedule with the range of the saturation power scaled. 
Nevertheless, the sequence of saturation powers used in a 
CEST‐MRF experiment could be further optimized using the 
above‐mentioned published methods combined with the fast 
dictionary generation software and the discrimination met-
rics presented here.

5 |  CONCLUSION

CEST‐MRF holds unique challenges for the optimization of 
the image acquisition parameters stemming from the long 
saturation times required to generate significant CEST con-
trast. Here, we found optimal acquisition parameters that 
represent a compromise between generating large ampli-
tude differences in the signal trajectory and non‐steady state 
conditions with unique trajectory patterns. The Euclidean 
distance‐based matching of signal trajectories may simul-
taneously improve the discrimination ability and reduce 
the scan time. For obtaining the most accurate CEST‐MRF  
exchange parameter maps, it is critical to optimize the acqui-
sition parameters for the specific application using numerical 
simulations of the parameter discrimination.
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SUPPORTING INFORMATION

Additional supporting information may be found online in 
the Supporting Information section at the end of the article.

FIGURE S1 A, Schematic of the CEST‐MRF pulse se-
quence with the parameters optimized throughout this work. 
Each iteration comprises a continuous saturation block where 
a pseudo‐random saturation power B

1
[n] is used at a specific 

saturation offset for a fixed saturation duration (Tsat). Next, 
standard imaging and relaxation blocks are performed, with a 
fixed flip angle (FA), TE, and TR. B, The baseline saturation 
powers used in42

FIGURE S2 A comparison between CEST‐MRF trajecto-
ries in the presence of various concentrations of amine ex-
changeable protons. In all cases, the amide exchange rate and 
volume fractions were set to 40 Hz and 0.63% respectively. 
The rest of the pool parameters were as depicted in Table 
1 scenario A (for amide, MT, and water), and Supporting 
Information Table S1 (for amine proton concentration of  
0 ‐ 40 mM). A‐B, 2‐norm normalized trajectories for the pro-
tocol with parameters optimized for dot product matching in 
the presence of 2‐ppm and 3‐ppm amine, respectively. C‐D, 
M

0 normalized trajectories for the protocol with parameters 
optimized for Euclidean distance matching in the presence 
of 2‐ppm and 3‐ppm amine, respectively
FIGURE S3 Visualizing the error distribution for amide 
proton volume fraction matching in the presence of a 3‐ppm 
amine pool. The Euclidean distance optimized protocol was 
utilized, and the amine proton concentration was set to 20 
mM. The rest of the simulated parameters are depicted in 
Supporting Information Table S1. The entirely red squares 
represent dictionary entries that were not properly matched 
due to the amine pool

FIGURE S4 Dependence of the dot product (A‐C) and 
Euclidean distance (D‐F) loss on the saturation power and 
time (Tsat) parameters, while using the optimized parameter 
set found for FA, TE, and saturation frequency offset. The 
TR was fixed to 4 s instead of 8 s for practical considerations. 
The left, center, and right column correspond to chemical ex-
change scenarios A, B, and C, respectively. The z‐axis rep-
resents the DPloss (A‐C) or ED

loss (D‐F), which is color coded 
from blue to yellow. The optimal combination of saturation 
power and Tsat for each case is given in the surface plot
TABLE S1 Evaluation of the amine‐pool effect on the amide 
MRF discrimination ability. The entire 570 trajectories of 
the in‐vivo scenario A (see Table 1) were re‐generated, with 
the addition of either a 2‐ppm or a 3‐ppm amine pool contri-
bution. The simulated amine parameters were T

1a = 1.45 s,  
T

2a = 10 ms, kaw = 500 Hz59,60 (2‐ppm)/5000 Hz59,60 (3‐ppm), 
and amine proton concentrations of 10, 20, and 40 mM. The 
trajectories were simulated for the optimized protocol param-
eters found for the Dot product metric (Figure 1, left column) 
as well as for the Euclidean distance metric (Figure 2, left col-
umn) with the TR set to 4 s for practical reasons. The RMSE of 
matching the resulting trajectories with the 3‐pool (no amine) 
reference dictionaries were calculated and are presented below
TABLE S2 The resulting saturation power and time (Tsat) 
values obtained for different orders of parameter optimization
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